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The primary aim of the analysis presented herein is to consolidate the ideas of the 
' conjugate-flow ' theory, which proposes that vortex breakdown is fundamentally 
a transition from a uniform state of swirling flow to one featuring stationary 
waves of finite amplitude. The original flow is assumed to be supercritical (i.e. 
incapable of bearing infinitesimal stationary waves), and the mechanism of the 
transition is explained on the basis of physical principles that are well established 
in relation to the analogous supercritical-flow phenomenon of the hydraulic jump 
or bore. In previous presentations of the theory the existence of appropriately 
descriptive solutions to the full equations of motion has only been inferred from 
these general principles, but here the solutions are demonstrated explicitly by 
means of a perturbation analysis. This has basically much in common with the 
classical theory of solitary and cnoidal waves, which is known to explain well the 
essential properties of weak bores. 

In § 2 the basic equations of the problem are set out and the leading results of 
the original theoretical treatment are recalled. The new developments are mainly 
presented in $ 3, where an analysis of finite-amplitude waves is completed by two 
different methods, each serving to illustrate points of interest. The effects of 
small energy losses and of small flow-force reductions (i.e. wave-resistance 
effects) are considered, and the analysis leads to a general classification of possible 
phenomena accompanying such changes of integral properties in either slightly 
supercritical or slightly subcritical vortex flows. The application to vortex break- 
down remains the focus of attention, however, and § 3 includes a careful appraisal 
of some experimental observations on the phenomenon. In 4 a summary is given 
of a variant on the previous methods which is required when the radial boundary 
of the flow is taken to infinity. The main analysis is developed without restriction 
to particular flow models, but in $ 5  the results are applied to a specific example. 

1. Introduction 
The theory to which the present work adds has been presented in two previous 

papers (Benjamin 1962, 1965; hereafter the first of these papers will be referred 
to as I). According to it, the vortex-breakdown phenomenon is explained as a 
transition between two steady states of axisymmetric swirling flow, being much 
the same in principle as the hydraulic jump in open-channel flow. The state up- 
stream from the breakdown point, say flow A ,  is assumed to have cylindrical 
stream-surfaces (i.e. to be axially uniform) and to be supercritical, which means 
that stationary waves of infinitesimal amplitude cannot be formed upon it by 
any non-dissipative process. From this assumption, two important steps in the 
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original analysis were to prove the following properties of the ‘conjugate’ 
cylindrical flow B that is generally derivable from A by applying conditions of 
energy and angular-momentum conservation between the two and also requiring 
them to satisfy the same boundary conditions. First, B is always subcritical, so 
that stationary periodic waves can arise upon it. Secondly, B in comparison with 
A has the greater value of flow force S ,  defined for each as the sum of the total 
axial momentum-flux and axial pressure force. Hence, the argument proceeds, 
a flow formed by the superposition of stationary waves on B may exist down- 
stream from the breakdown point, the flow-force balance needed for a steady 
state being achieved by the effect of wave resistance-which is equivalent to a 
reduction in flow force. In  other words, the excess S,  - S, is absorbed by wave 
formation; or alternatively, if the original flow is a long way supercritical and 
consequently S,  - S,  is large, such a violent wave-making action is induced that 
the leading wave breaks in the form of a burst of turbulence. 

At the time when this argument was first advanced, no theory of finite- 
amplitude waves in swirling flows was available, and the property of flow-force 
reduction from a uniform subcritical state could only be inferred from the theory 
of infinitesimal waves (I, $3.4). Though physically plausible and supported by 
analogy with well-established results in gravity-wave theory, this line of reason- 
ing therefore lacked a complete mathematical demonstration. It was also some- 
what oblique in that the physical realizability of the proposed type of flow follow- 
ing breakdown was deduced in the two steps A + B + B + waves, rather than in 
the single step A + A  +waves which might have made a more convincing explana- 
tion if some analytical basis for it could have been provided. The main object of 
the present paper is to demonstrate the latter, more direct kind of argument for 
the existence of wavy flows arising from vortex breakdown. That is, it  will be 
shown how such flows can be represented as perturbations of finite amplitude 
from the original supercritical flow A .  The required theory has the same place in 
this context as cnoidal-wave theory in the study of open-channel flows, the 
classical version of which theory was shown by Benjamin & Lighthill (1954) to 
account satisfactorily for weak, undular hydraulic jumps. 

A suitable method of analysis has been developed in a recent paper (Benjamin 
1966; hereafter this paper will be referred to as 11), but there it was applied to the 
description of finite-amplitude waves in non-homogeneous fluids under gravity. 
A comprehensive account of steady long-wave phenomena in that type of 
system was attempted, including ‘internal’ bores and lee waves, and several 
points with direct bearing on the vortex-breakdown theory were noted. Although 
the essential ideas have thus already been covered, it is considered worth while 
to redevelop some of the analysis in the context of swirling flows and so make 
good the claims for this application that were outlined in 11. 

2. Definitions and basic equations 
A frictionless and incompressible fluid, with density p, is considered to flow 

steadily along a uniform duct whose cross-section is circular and has radius R. 
Let x and r denote axial and radial co-ordinates, with x increasing in the direction 
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of flow, and let y = &r2, a = &R2. For the primary, cylindrical state of flow from 
which waves are supposed to arise, the axial velocity Wand swirl velocity V are 
prescribed functions of y alone. The stream-function YA(g) for this primary flow 
is defined by W = d Y P , / d y ,  W,(O) = 0, and the pressure p can be found by inte- 
grating the equation of radial equilibrium dpldy = $p Vz/y. Hence the stagnation 
pressure pH = p + &p( W 2  + V z )  and the quantity I = y V 2 ,  which is (8n2)-1 times 
the square of the circulation 2 m V ,  can be expressed as functions of y or of Y,. 

In a second state of axisymmetric flow arising from the primary one without 
energy loss, Hand I keep their original values along the common stream-surfaces. 
It was shown in I (appendix, § ( a ) )  that these properties require the streani- 
function @(x,  y) to satisfy the equation 

which is generally non-linear. Here the accents denote derivatives with respect 
to ~, and the functions H(@) and I (@)  have the same forms as H(@J and I ( @ A )  
derived for the primary flow. The kinematical boundary conditions, at  the axis 
and at  the wall of the duct, are 

@ ( X , O )  = 0, @(x ,a )  = Y,(a). (2)  

In  terms of li/, the radial, azimuthal and axial velocity components are given 

In I particular attention was paid to the relationships between states of 
cylindrical flow possible in the same system. A solution @ = Y ( y )  + Y,(y) of the 
ordinary differential equation 

1 
-- I' (df)  
2Y 

(4) 

subject to the boundary conditions (2) is said to be conjugate to the primary 
solution YA. An indefinitely large number of such solutions generally exists, but 
the vortex-breakdown theory is concerned only with the conjugate state B that 
is adjacent to A (I, pp. 605, 6OS), being defined uniquely by the property that the 
solution curves in the (y, @)-plane, as illustrated by figure 1,  do not intersect 
except at  their end-points [0, 01 and [a,  Y,(a)] . t  An extension of the theory to 
account for flows in ducts with gradually-varying circular cross-section has been 
outlined by Benjamin (1965). In  this application @ is still a solution of (4) rather 
than (l), but depends on x through the second of the boundary conditions ( 2 ) ,  in 
which a is allowed to be a slowly-varying function of x. 

Let PS now consider smaEl axisymmetric perturbations from a given cylindrical 
flow, assuming them to be imposed under the conditions that the total flow rate 
(which equals 2nY(a))  and the distributions of H and I with @remain unchanged. 
(The cylindrical flow in question may be either A or B, and so for the moment no 
suffix will be used to distinguish the particular Y.) Supposing a disturbance with 

t Another definition of the adjacent Conjugate state was also introduced in I (p. 606), 
and was shown to imply the present one. The equivalence of the two has been proved 
rigorously by Fraenkel (1966). 

5.3 
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exponential dependence on x (including the case of a sinusoidal wave, for which 
the exponent is purely imaginary), we may put 

$ = W Y )  + 4 Y )  eyz, ( 5 )  

and from (1) derive a linearized equation for 4 (cf. I, $3.1 and appendix, $ § ( b ) ,  
(c)). This is 

where (7)  

0 a Y 
FIGURE 1. Illustration of conjugate solutions @ = YA(y) and t,k = YB(y). 

The boundary conditions require that 

4(0) = 0, #(a) = 0. (9) 

A helpful classification of flow properties can be made by consideration of (6) 
and (9) as a Sturm-Liouville system (see I, $3.1; also 11, $3.4). A feature calling 
for caution is that the system is singular at  the end-point y = 0,  where both P 
and the coefficient of the eigenvalue y2 have simple poles (P because the angular 
velocity o at the axis will be finite in any practical steady flow with swirl, so that 
I -+ 2w2 y2 for y + 0). However, it  can be confirmed that the required conclusions 
from Sturm-Liouville theory (in particular, the existence of an infinite sequence 
of real eigenvalues yt < y: < yg < . . .) are unaffected by this feature: for instance, 
an adequate foundation for them may be found in the simple exposition of the 
theory by Morse & Feshbach (1953, p. 719 et seq.), and for a rigorous discussion of 
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the ‘singular case’ reference may be made to the treatise by Titchmarsh (1962). 
If at least one eigenvalue, say y& is negative, then the cylindrical flow represented 
by Y(y) is said to be subcritical. A subcritical flow can therefore support, under 
the assumed conditions, an infinitesimal stationary disturbance in the form of a 
sinusoidal wave whose wavelength is given by 277/a,,, where a; = - y;. If every 
eigenvalue y2 is positive, the flow is said to be supercritical. Thus, under the 
assumed conditions, stationary sinusoidal waves are impossible on a super- 
critical flow.? It was shown in I that if flow A is supercritical, then the conjugate 
flow B is subcritical, and this universal property of conjugate-flow pairs, if they 
exist, has been reaffirmed by Fraenkel(l966) using a different argument. 

In this paper we are concerned only with flow conditions close to critical, so 
that the magnitude of the least eigenvalue y; may be regarded as small. Recalling 
how y was introduced in ( 5 ) ,  we may introduce a typical length scale 1 for the 
axial variations of a small perturbation and suppose 1 to be much larger than the 
radius R of the duct. Then we express the eigenvalue by 

y; = 1 - 2 r 2 ,  (10) 

and regard I‘ as O( 1) when the radius of the duct is taken as the unit of length. 
As a well-known general property of Sturm-Liouville functions, the respective 
solution #* of (6) and (9) makes only one oscillation over the interval, thus having 
no zero between the end-points. 

It can also be supposed that the condition of any flow in question could be 
made critical by slightly changing the value of some physical parameter. This 
parameter might be chosen in several ways and at  present there is no need to be 
specific about it, but let us denote it by c. Then the following considerations show 
that the fractional change, say Sclc, needed to make the flow critical is O ( P ) .  

8P We write 
P ( y )  - P ( ~ )  = --& + o(1-4) 

ac 

= Z-ZC(y) + 0(1--4), (11)  

(d2$/dy2) + P $  = 0 (12) 

where P(y) is defined as the modified form of P(y)  representing a critical flow; 
t.hus there exists a solution of 

t These ideas are illustrated by the following example. Let W = C (const.) and I = 2w2y2 
throughout the closed interval between y = 0 and y = a. Then equation ( 6 )  becomes 

The solution vanishing a t  y = 0 is 

Hence the other end-condition q5 = 0 a t  r = R leads to 

q5yy+&1/12q5 = 0, with p2 = (4w2/C2)+2yZ. 

Q, = (2Y)*JlWY)~I = TJl(PY). 

y i  = $ ( Y ; / R ~ ) - ( Z W ~ / C ~ )  (TL = 0, 1, 2, ...), 

where the A, are the successive positive zeros of the Bessel function J,. Thus, since 
A, = 3.832, the flow is subcritical if w R  > 1.916C and supercritical if oR < 1.91GC. 

Note that the second solution of the differential equation is rYl(/lr), which is un- 
bounded at  r = 0;  but this solution is excluded as part of the eigenfunction q5 by the first 
end-condition. As exemplified here, equation (6) in general has independent solutions in 
the forms yA and y(B + A  log y), where A and B are ascending power series each of which 
starts with a constant term; but the second of these solutions is excluded. 
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satisfying 6 = o for y = O , U ,  

$. 0 for 0 < y < a.. 

To relate the physical change 5(y) to the value of the eigenvalue y& we now express 
the original eigenfunction by the expansion 

(14) q50 = 6, + 1-2&1+ 1-46,,, + . . . . 
Substituting this expansion, together with (10) for y i  and (1 1) for P, in (6) and 
(9) and then separating the coefficients of successive powers of 1k2,  we first find 
that 

61 = #. 

A necessary and sufficient condition for the inhomogeneous system (16) to have 
a solution is that the right-hand side of the differential equation should be 
orthogonal to the solution 6 of the homogeneous system (Ince 1926, $1.32). 
Thus, using (15), we conclude that 

This formula confirms the previous assumption about the magnitude of P - P ,  
and it can be used to determine the scaled eigenvalue r2 from the physical pro- 

perty 5.t 
Finally, a definition of the $ow force is needed : 

x = %*IOU (p +pwZ)dy. 

Using the fact that 
H ( $ )  = (p/p)++(u2+vZ+w2), 

and substituting the expressions (3) for the velocity component,s, we obtain 
from (18) 

By differentiation of this integral with respect to x, it appears directly that 
(1)  implies S = const. if a = const. (cf. 11, $2 .2 ) .  This confirms the obvious 
physical property that X is an invariant of any frictionless steady flow along a 
uniform duct. 

t Note that for the example explained in the preceding footnote, we h a w  

J-ZC = - 

and evidently the 'critical' form P of P, as represented by the first term on the right-hand 
side, can be realized either by increasing o or decreasing C from respective supercritical 
values. In t,his case, (17) gives 

7; = 2R-'[(1.916)'- (URIC)'], 

reproducing the formula given in the first footnote. 
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By means of a variational argument applied to the X-integral for cylindrical 
flows (i.e. (19) without the second term in the integrand), it was shown in I 
( $ 3  4.3,4.5) that S, > 8, always, if A and Bare respectively the supercritical and 
the subcritical member of a conjugate pair of flow states. This conclusion has 
been established in another way by Fraenkel (1966). 

3. Analysis for long waves of finite amplitude 
The procedure to be followed is the same in principle as the one that was de- 

veloped in 11, and reference may be made to the previous paper for supporting 
discussion. We put 

obtaining from ( 2 )  the boundary conditions 

+ = Y A ( Y )  3- .$(., y; 4 3  (20) 

$ = O  for y =  0 and y = a .  (21) 

We then expand the flow-force integral (19) in powers of E as far as e3, a t  which 
stage the implicit dependence of $ on E is decided. Expressed by this expansion, 
the condition that S is a specific constant determines the approximate form of a 
stationary-wave disturbance for small but finite values of the amplitude para- 
meter E. In the appendix to this paper, it will be shown how the results obtained 
in this way accord with the results given by a more orthodox procedure of 
expansion in powers of E, wherewith the differential equation (1) for the stream- 
function is solved by successive approximations. The present approach is more 
fruitful than this alternative, however, since it reveals the precise physical signi- 
ficance of a certain parameter which in the other approach appears merely as an 
arbitrary constant of integration. 

Allowance for the effect of a possible axial force applied externally, as when a 
rigid body is fixed in the flow or when there is a frictional force, can be made by 
including a ' wave-resistance ' term in the flow-force balance; but this is assumed 
to be only a small quantity O(e3).  Accordingly we write 

8, - 8 = 277Pe3s ( 2 2 )  

(cf. 11, $3.5,  assumption (iii)). A correspondingly small loss of energy, causing a 
diminution in the total head H ,  can also be represented consistently within the 
framework of the third-order approximation. We therefore write 

(cf. 11, 3 3.5, assumption (iv)). [It should be recognized that dissipative processes 
might also cause some change in the distribution of angular momentum, i.e. in 
the form of I ;  but this effect could also be included by an obvious extension of the 
definition of q. For a full explanation of the principle in view, see the footnote on 
p. 253 of 11.1 

Using these definitions and expanding the integral expression (19) after substi- 
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tution of (20), we find that the coefficient of 
I, appendix, $ (c)) and we obtain to O(e3) 

in S - S, vanishes identically (see 

where 

(24) 

This may be treated as an integral equation for $, in which q and s are regarded as 
prescribed parameters. To solve the equation approximately and apply it to the 
description of vortex breakdown, we may proceed in two alternative m 7a y s as 
follows. 

Method 1 

Put 1% = f ( X ) x ( y ) ,  ( 8 5 )  

with s = E B X ,  (26) 

and E x  = irTu - Y“,. ( 2 7 )  

Here x is understood to be of the same order of magnitude as Y, and ’PB, and 
(26) is equivalent to the assumption that I = s-i. The possible validity of this 
form of solution, and of the underlying assumption that c is a small number, 
clearly requires the state of flow A to be close to critical, because only then is the 
conjugate flow B little different €rom A .  Note that the transformation (26) to a 
stretched axial scale with I = E-4 corresponds to a well-known principle in 
classical solitary- and cnoidal-wave theory (cf. 11, $ 1 and $3.5, assumption (i)). 

By definition both YlI and Y, = Y, +ex are solutions of (4) satisfying the 
boundary conditions ( 2 ) .  Hence, by expanding in powers of E ,  we find from (4) 
that 

and so, since ~ ( 0 )  = x ( a )  = 0, 

x v V  = - IC”(Tk”,, y)x - i E h ” ” ( Y f r , ,  y)X2 + O(e2)) 

/ou{x: - h’”(YA, Y)X2)dY = J%h.”(YLI, y)x3dy + O ( E 3 ) .  (28) 

This result is now used to reduce equation (24) after substitution of ( 2 5 ) .  Thus all 
terms of the equation are seen to be O(e3),  and upon rearrangement it gives 

cfg = Ofz(: -f) + 2 ( ~  - q ) ,  (29) 

in which ( 30) 

( 3  1) 

The subsequent physical interpretation depends crucially on the fact that the 
coefficient D is always positive when flow A is supercritical, the proof of which is 
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as follows. By putting @ = IFB = YA +ex in the flow-force integral (19), expand- 
ing powers of € and reducing the result by use of (28) in the same way as before, 
we readily establish that 

S,-S, = $77pe3D+O(a4). (32) 

We therefore have D > 0 as a corollary of the general theorem that S ,  > S,, 
which was recalled at the end of 9 2 .  

The result (29) is a sufficient basis for the description of the wavy flows en- 
visaged to arise from a mild vortex breakdown, but a detailed explanation is 
postponed until an alternative equation of this type has been derived by method 
2 below. We note at once, however, that with s = q = 0 the only non-trivial 
solution of (29) is 

which represents a solitary wave. Thus it appears that a solitary wave is the only 
steady disturbance that can arise in a supercritical swirling flow without change 
of energy or flow force. The same property has previously been established for 
supercritica.1 flows along horizontal open channels (Benjamin & Lighthill 1954) 
and for supercritical flows of arbitrarily stratified fluids (11, $3.6).  To account 
for the formation of steady periodic waves upon a supercritical swirling flow, it 
is necessary to assume some slight loss of energy, just as was shown in the 
previous studies to be necessary to account for undular hydraulic jumps and for 
internal bores. 

A point of interest is that, according to (25) and (33), the amplitude of the 
solitary wave possible in a given slightly supercritical flow is 8 times the perturba- 
tion giving the conjugate subcritical flow. Thus, in the wave, the changes in 
cross-sectional structure swing 50 yo beyond the conjugate state. In so far as we 
are at  present concerned only with a first approximation to long waves of finite 
amplitude and permanent form, this property seems to be universal among the 
general class of physical systems in which solitary waves are possible. For 
instance, it is easily shown that the maximum elevation of a solitary wave on 
water in an open channel is # times the rise in water level to the respective conju- 
gate state (i.e. to the uniform subcritical flow that has the same discharge and 
total head, but not flow force, as the supercritical flow in question). 

f = hsech2{~($D/C)*X}, (33) 

Method 2 

In applications to specific examples, a disadvantage of the preceding results is 
that the non-linear ordinary differential equation (4) needs to be solved in order 
to find x and hence determine the coefficients C and D. The present approximate 
method requires only a linear equation to be solved. 

We try for a solution of (24) in the form 

$ = g ( X ) & y ) ,  (34) 

where is defined by (12) and (13). To reduce the result obtained after substitu- 
tion of this expression into (24), use is made of the assumption that the condition 
of flow A is close to critical, the margin being O(e). Thus, putting Z k 2  = t: in ( 1  1) )  
we write 

P(Y)  = &Y)  + 4 ( Y L  (35) 
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and note from (7) that P(y )  is the same as K"(Y,, y). Also for use in the reduction 
of (24), we obtain from (12) and (13) 

Jou { g) - P(y) 62] dy = 0. 

Hence (24) is seen to be satisfied by (34) to O($) if 

Egg = Fg2 - Gg3 + 2 ( ~  - q ) ,  

where 

Note that the second of (39) follows from (17), and that the arbitrary constant 
multiplying 6 as defined does not affect the result obtained from (34) and (37). 
Equation (37) is of the same type as (29) which was derived by method 1, and the 
physical interpretation that will now be made with regard to (37) can easily be 
refashioned on the basis of the previous equation. The respective end-results are, 
of course, equivalent within the adopted order of approximation (e.g. apart from 
a constant factor, the functions 6 and x are approximately the same), and the 
only essential difference is one of computational advantage. A helpful feature of 
the present equation is that the effect of the extent to which flow A departs from 
a critical condition is represented explicitly in the coefficient F defined by (39), 
whereas before it was merely implicit in the function x. 

We have F > 0 whenever the primary flow is supercritical, since then r2 > 0 
as was explained in 5 2 .  This is the case principally in view. But we also observe 
that F < 0 when the primary flow is subcritical (for which case the identifications 
A and B need to be reversed between the conjugate-flow pair engirdling the 
critical state), and the interpretation of (37) in this case seems worth noting 
incidentally. The two cases require separate discussion as follows, the argument 
being essentially the same as in 11, 53.7. To be definite we assume that G > 0, 
but the general conclusions to be drawn are obviously unchanged when G < 0. 

Xupercritical case 

Since F > 0, the cubic in g on the right-hand side of (37) has the form illustrated 
in figure 2(a). When q-s = 0, curved  is described, touching the g-axis at the 
origin. The solution of (37) is then 

g = F - sech2 (a ( g ) ' X ) ,  
G 

which like (33) represents a solitary wave. By comparing the expression for I,$ 
given by (25) and (33) with that given by (34) and (41), we deduce that a first 
approximation to the function x is 

X(Y) = (2F/3G)$, + O(4, (42) 

which is independent of the arbitrary constant multiplying 4,. 
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It seems reasonable to  suppose that the disturbance heading a mild vortex 
breakdown may closely resemble a solitary wave, just as does the leading wave of 
a weak, undular hydraulic jump (Benjamin & Lighthill 1954). The photographic 

(b )  
FIGURE 2. Forms of the cubic Pg2 - Gg3 + 2(s - q )  with G > 0 : (a)  supercritical case P > 0 ; 

( b )  subcritical case P < 0. 

observations made by Harvey (1962, figures 2-4 (plates 1, 2)) on mild break- 
downs support this view, since they show the initial disturbance to comprise a 
nearly symmetrical swelling of the stream-surfaces originally close to the axis, 
enclosing an ovoid region of circulating fluid. A disturbance thus large enough 
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to produce a stagnation point on the axis (at the front of the ovoid region) is 
probably beyond the scope of the present approximate theory, whose validity is 
ensured only when the amplitude E of the flow perturbation is small; but this 
experimental evidence of a stationary wave-like, axisymmetric disturbance 
appears wholly in accord with the basic ideas of the theory. Harvey’s figure 4 
(plate 2 )  is particularly striking as it shows a bulbous disturbance almost per- 
fectly symmetrical about its equatorial plane. This was produced by making a 
slight reduction in the cross-section of the duct (i.e. a reduction in a)  immediately 
downstream, the effect of which was to sweep away the similarly bulbous, but 
much less regular disturbance that otherwise formed behind the first one. Note 
that, according to the analysis outlined by Benjamin (1965), a contraction of the 
boundary changes a supercritical flow of this type in the direction away from 
critical. Hence, as is a well-known effect of such a change in the analogous cases 
of hydraulic-jump formation and of shock-wave formation in steady gas flows, 
waves are less liable to be precipitated. 

Since in practice the process of vortex breakdown is bound to be dissipative to 
some extent, it  is natural to allow for an energy loss, putting q > 0 ,  in applying 
the theory to the interpretation of the phenomenon. But as the phenomenon 
evidently may arise without significant external force being present to bring 
about a change in flow force, we may still take s = 0 as the most reasonable 
specification of the theoretical model, thus ignoring the possible effect of a 
frictional force (or, perhaps a little more realistically, we might allow for the 
latter possibility but assume that q > s). With s = 0, q > 0, the curve in figure 
2 (a) is lowered to become one of type 23’. The cubic then has three distinct real 
roots and the solution of (37) is periodic: g oscillates between the values g1 and 
g,, and g, (which by (37) is proportional to either square root of the cubic) 
changes sign as g passes through these extrema. We thus have an explicit repre- 
sentation of a finite-amplitude wave train arising from the primary supercritical 
flow, which is precisely the situation propounded by the original presentation of 
the vortex-breakdown theory in I-although there the necessity of a slight 
energy loss was not recognized.? (The representation of the energy loss as being 
concentrated at the front of the wave train is, of course, a convenient idealiza- 
tion which is open to obvious objections; but a t  least it  serves as a rational model 
for a slightly dissipative system and admits the theory to the description of an 
important class of physical situations that would be inaccessible if no dissipation 
were allowed.) 

As already mentioned above, Harvey’s experiments showed the first wave of a 
mild vortex breakdown to be followed by a second one unless special measures 
were taken to suppress it; and there appears reason enough to suppose that a 
periodic solution of the finite-perturbation equations comes closest, within the 
limitations of ideal-fluid theory, to representing the observed situation. This 
interpretation is the same in principle as the one that was made by Benjamin & 
Lighthill (1954) with regard to undular hydraulic jumps and bores, the applicable 
theoretical result in that instance being the classical cnoidal-wave solution of 
Korteweg & de Vries (Lamb 1932, $253). Unlike the analogous phenomenon in 

t But see the footnote on p. 597 of I. 
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open-channel flow, however, the structure of a vortex breakdown in practice 
manifests only the rudiments of a wave train: the motion becomes unsteady and 
irregular by the stage of the second wave, if not before, and it appears that the 
axisymmetric form of disturbance sometimes observed (as by Harvey) is general- 
ly unstable and so liable to disintegrate rapidly. Thus the steady wave train that 
is theoretically possible is never seen intact, although the experimental observa- 
tions by Harvey and others strongly suggest its inherent role as the basic state 
upon which the actual flow subsists, developing as a result of instability or of 
incidentally imposed fluctuations. Nevertheless, such a wave train might be 
realized much more distinctly as a travelling disturbance, the counterpart of a 
progressive bore just as the usual vortex-breakdown phenomenon is the counter- 
part of a stationary hydraulic jump. An experimental investigation into this 
possibility, and also into the subject of progressive solitary waves in rotating 
fluids, is currently being undertaken by Mr W. G. Pritchard at  Cambridge. 

The curve in figure 2 (a )  is of type @ when 0 < q -  s < 2F3/37G2. The three 
roots of the cubic, as indicated in the figure, are given in this case by 

with 

g, = F/3G{1+ 3 cos 6'}, 

g2 = F / ~ G { ~ + ~ c o s ( B - ? ~ T ) ) ,  

g, = F/3G { 1 + 2 cos (6' + in)}, 

The solution of (37) is then 

with 

(43) 

(44) 

The period of the function cn2is 2 times K(k) ,  the complete elliptic integral of the 
first kind, and so the wavelength is 

h = [ 2 K ( k ) ] / ~ t  (45) 

when expressed in the same units as S. 
The solution (44) reduces correctly to the solitary-wave solution (41) when 

q - s -t 0, so that g2 -t - g3 -t 0 and hence k --f 1. It is of interest to examine the 
form of the solution when q - s is still positive but is very much smaller than 
2P3/27G2 (e.g. in the cas0 where s = 0 and the energy loss is reduced almost to 
zero). The solution then resembles a sequence of solitary waves, whose amplitude 
is very nearly equal to FIG, and the form of the individual waves is scarcely 
affected by the value of q - s. Their spacing h remains a definite function of q - s, 
however. Using the asymptotic property of K ( k )  for k - t  1 (Whittaker & Watson 
1927, p. 521)) we deduce that 
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Thus, although h is unbounded in the limit q - s --f 0,  its rate of increase with 
decreasing q - s is in the end very slow. This result indicates that an exceedingly 
small amount of dissipation may be enough to account for the periodicity of the 
flow structure following a mild vortex breakdown, notwithstanding that the 
second wave could not form within a finite distance if the system were strictly 
non-dissipative. 

Note that the wave amplitude g , - g ,  diminishes with increasing q - s ,  and 
vanishes when q - s = 2F3/27G2. Curve $7 is then described in figure 2 (a) ,  and the 
double root of the cubic-i.e. g ,  = g2 = 2F13G-represents the uniform flow that 
is conjugate to the original flow A (cf. equation (42)). As q-s  approaches 
2F3/27G2, we have k .+ 0 and the solution (44) then represents a sinusoidal wave 
train of infinitesimal amplitude. Thus the conjugate flow is shown to be sub- 
critical, in confirmation of the theorem proved in I. The physical change repre- 
sented by&+% in figure 2 ( a )  corresponds to the classical model for a dissipative 
hydraulic jump or bore (Lamb 1932, §280), in which a transition from a super- 
critical uniform flow to a subcritical one is brought about by a total-head loss at 
constant flow-force. If s = 0, the value r = 2F3/27G2 required to lower the cubic 
curve from& to $7 represents the maximum energy loss then possible at the front 
of a vortex breakdown. A large-amplitude wave train can occur (or at  least tend 
to develop in the manner shown by Harvey’s observations) only if the energy loss 
is substantially less than this maximum. 

Xubcriticnl case 

Since F < 0 in this case, the cubic in g has the form illustrated in figure 2 (b ) .  
There is now no non-trivial real solution when q - s  = 0 (curved’). This fact 
means that no steady wave can arise in a subcritical swirling flow without change 
of energy or flow force, which is a property in common with subcritical open- 
channel flows (Benjamin & Lighthill 1954) and subcritical flows of stratified 
fluids (11, $3.7). To obtain waves we must have s - q  > 0 ,  so that the curve in 
figure 2 (b)  is raised to become one of type 8‘ and, with obvious modifications, the 
cnoidal-wave solution (44) applies. This result represents the phenomenon of 
wave resistance in swirling flows, about which much was said in I. As the simplest 
physical illustration, suppose an axisymmetric obstacle to be fixed in the sub- 
critical flow and to generate a wave train in its wake. Then the drag on the 
obstacle equals the flow-force reduction 27rps3s in the receding flow. Since the 
wave amplitude (i.e. the spacing of the two higher roots, between which the 
cubic is positive) obviously increases steadily with q - s, we conclude that for a 
given drag the amplitude is diminished by energy losses as represented by q. 
Alternatively, we can say that the drag experienced by the obstacle increases 
both with the amplitude of the waves generated and with incidental dissipation. 

For a sufficiently large value of s -q ,  the curves of type 8’ in figure 2(b) 
approach curve v‘, whose minimum point gives a double root of the cubic and so, 
like the origin for curve & in figure 2 (a ) ,  represents the uniform supercritical 
flow that is conjugate to the subcritical flow in question. As discussed previously, 
waves of large amplitude and wavelength, resembling a succession of solitary 



Theory of vortex breakdown, 79 

waves, arise under conditions neighbouring on those for a uniform supercritical 
state as given by V’ or&. When such waves are produced in the way now con- 
templated, however, it is possible that a very slight change in conditions would 
result in the wave train being swept away downstream, leaving the flow behind 
the obstacle in the uniform supercritical state (see Benjamin (1956) for an 
account of the corresponding phenomenon in an open-channel flow spanned by 
an obstacle such as a plan$ing plate). 

4. The case of unbounded flows 
A variant on the preceding methods of treatment will now be outlined, which 

becomes necessary when the flow is unbounded radially. The preceding methods 
break down in this case because the assumption that the length scale 1 = e-6 
greatly exceeds the radius of the duct is obviously inadmissible, and the alterna- 
tive assumption that 1 greatly exceeds some finite radius characteristic of the 
flow structure (for instance the radius of a core outside which the flow is irrota- 
tional-see below) is found to be inadequate. 

However, it was shown by an example in I ( $ 5 ,  example 2) that the leading 
conclusions of the original theory still hold when the boundary is expanded to 
infinity. The model in question for the primary flow A consists of a core of fluid 
in solid-body rotation and an outer region of arbitrary extent in which the flow 
is irrotational, having constant azimuthal circulation. Respective to a super- 
critical flow A with uniform axial velocity, there was shown to exist a subcritical 
conjugate flow B in which the core is expanded from its original radius, and vari- 
ous properties of B, such as the flow force excess S, - X,, appeared to remain 
determinate in the limit u-+ co. But when the coefficients C defined by (30) and 
E defined by (38) are formally determined for this model, both are found to in- 
crease without bound like loga as a+ co. On the other hand, the coefficient D 
appearing in equation (29) and both F and G in (37) take finite values in this 
limit, because over the region where the flow is irrotational there is no contribu- 
tion to the integrals (31)) (39) and (40). 

One may conclude from these facts that when the flow is extended radially 
without limit, a solitary wave is still a formally possible solution of the perturba- 
tion equations, but its length scale, which equations (29) and (37) show to be 
proportional to (C/D)* or (E/F)g, becomes indefinitely great. The argument 
based on methods 1 or 2, proposing a direct connexion between the solitary-wave 
solution and the flow following a vortex breakdown, is therefore clearly useless 
in this case. An equally obvious aspect of the difficulty is that there is no choice 
of the parameter q - s giving a determined periodic solution of (29) or (37). 

A way round the difficulty is suggested by the fact, demonstrated in I, that the 
conjugate flow B remains determinate in the limit a+ co and, being subcritical, 
it can support infinitesimal waves offinite wavelength. Accordingly, a perturba- 
tion of finite amplitude from flow B is considered, the length scale of which is 
taken to have the same order of magnitude as the determinate scale ofthein- 
finitesimal waves. This approach in effect retraces the original physical argument 
used in I. 
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(47) 

where $,,, is the first eigenfunction of the system (6) and (9) when P( y) is evalu- 
ated for flow B. The respective eigenvalue y i  (=  -a: = el?%, say) is negative 
since B is subcritical. Hence, proceeding as before to expand the flow-force 
integral, we obtain finally 

(48) 

We put 
II. = YB(Y) + e w ) $ o , B ( Y ) ,  

L ( ~ S  - rgv) - m 3  = $0 + 2(s - q ) ,  

in which 

and D is given by (32). It can be easily confirmed that this result is approximately 
equivalent to the ones given by methods 1 and 2 in cases where the flow has a 
finite boundary. But the coefficients of (48) all remain determinate when a is 
made infinite. In  this case the outer boundary condition on the solution of (6) 
must be taken as q50, + 0 for y -+ co ; and hence it is found that in the region of 
irrotational flow $o,B = yKl(aor), where Kl is the first-order modified Bessel 
function of the second kind. Unlike C, E or L itself in the case of finite a, however, 
L is not necessarily independent of e to a first approximation: in fact, for suffici- 
ently small e, it  becomes proportional to -log (erg). 

5.  An example 
This was previously treated in I, $5, where the properties of the flow B con- 

jugate to the given flow A were derived. The solitary-wave solution given by (34) 
and (41) will now be worked out explicitly, the corresponding results for the 
cnoidal-wave solution (44) then being obvious. Though it is unrealistic as a 
model for a stationary vortex breakdown, this model serves well to illustrate the 
steady propagation (observed in a moving reference frame) of finite waves into a 
region where the fluid has zero axial velocity and a stable, non-uniform distribu- 
tion of angular velocity-such as would be created if the containing tube were 
whirled for a limited time a t  constant speed.? 

For the primary flow A ,  we take 

and 

W = 1 so that Y, = y, 

v = (3)l z KY. 

t It might well be asked why the simple example discussed in the footnotes to $ 2  is 
not considered further. This example would be relevant to the experiment just suggested 
if the tube were whirled for a long time, so that the whole fluid acquired solid-body rota- 
tion. But Benjamin & Barnard (1964) have pointed out that, in consequence of equation 
(1)  for the stream-function being linear in this case, steady wave propagation into the 
undisturbed fluid is impossible and there is no solution modelling a steady vortex break- 
down (see also 11, $3.9, for a discussion of the peculiarities of linear systems). 
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h’”(Y,,Y) = 2K2/y. (54) 

and deduce from (52) and (53) that 

It follows from the preceding definitions that, according to (7) and (8) ,  

and clearly 
P(Y) = K 2 ,  

P(y) = x2 = (.lay 

since this choice of P gives a solution 

6 = sinzy ( 5 7 )  

of (12) satisfying the conditions (13). The condition that flow A be supercritical 
is evidently K~ < R2. 

( 5 8 )  
From (35) we obtain €5 = R 2 -  K2, 

and hence from (39) with (57) substituted 

(69) 

Next, the substitution of (57) into (38) gives 

= J jas inzky  2= 1 - cosu dtl 

2 0  Y 
= a{y + log 277 - Ci (2n)) = 0.6094. (60) 

(Here y denotes Euler’s constant and Ci the cosine integral.) Finally, the snbstitu- 
tion of (54) and (57) into (40) gives 

= & ~ ~ ( 3  Si (n) - Si (3n)) = 0 . 6 4 6 8 ~ ~ .  (61) 

(Here Si denotes the sine integral.) 

stream-function perturbation 
From (34) and (41), using these expressions for E ,  EB’ and 0, we obtain for the 

- YP, = €$ 

~ e c h ~ { 0 . 4 5 3 ( ~ ~ - ~ ~ ) ~ a Q x ) .  (62) 

To a first approximation for small amplitude, the radial displacement of the 
streamlines from their original positions is given by 

ay = -(+-‘rA)/w = 

1 1 
r Or &=-ay=-- (+-y . ”  r A ) .  (63) 

Hence Sr is seen to be proportional to 

R m2 
- sin ( F )  , 
r 

Fluid Mech. 28 



82 T .  Brooke Benjamin 

which has a maximum value 1.509 for r = 0.609R. Now let ER denote the magni- 
tude of the maximum displacement 6r which is attained at this radius in the 
central plane x = 0 of the wave; thus c is given a precise physical significance 
consistent with its previous general use as an ordering parameter. Then (62) and 
(63) show that 

Hence we obtain for the displacement 

E = 0 * 5 8 3 [ ( k 2 / ~ 2 )  - 11. (64) 

r 

Note that this displacement is everywhere inwards towards the axis. 

6. Conclusion 
It is hoped that this analysis, and particularly the physical discussion included 

in § 3, will reinforce the original presentation of the vortex-breakdown theory, 
making the theory more acceptable as a basic rationale for the observed pheno- 
menon. Unfortunately, advocacy of this explanation for vortex breakdown is 
handicapped by the complicated incidental effects that often appear experi- 
mentally, notably the very rapid disintegration of the predicted wave trains 
which has the result that, even in experiments as delicate as Harvey’s (1962), 
only one or two waves are distinguishable. Again, it  has often been observed that 
a filament of dyed fluid originally along the axis goes into a spiralling motion 
after a breakdown, indicating that the flow structure is neither axisymmetric nor 
steady. There is good reason to suppose, however, that such effects arise from 
instability of the steady wave trains described by the present theory and so are 
secondary. The most reasonable interpretation seems to be that the theory des- 
cribes the basic state upon which the actual flow subsists; and although some- 
times the secondary developments completely obscure this underlying structure 
of the flow, there are some observations, such as Harvey’s, that reveal it un- 
mistakably. 

I am indebted to Mr L. E. Fraenkel for many constructive comments on the 
first draft of this paper. 

Appendix 
Here it is shown that the results given by method 2 ,  which is based on an 

evaluation of the flow-force integral to third order, are in accord with a direct 
solution of the partial differential equations of motion to second order. As before, 
we assume that the state of flow A is close to critical, so that the expression 

is possible in which 6 has the same order of magnitude as P and P .  And again 
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we assume that X-derivatives have the same order of magnitude as the functioiis 
differentiated. If the formal expansion 

7cr = YAY) + “$l(X, Y) + C2$2(X, y) + . . . (a 3) 

is now substituted into equation (1) and its boundary conditions ( 2 ) ,  the co- 
efficients of successive powers of 6 may be separated and considered in turn. 

First we obtain, collecting terms in €1, 

from which and from the boundary conditions we deduce that 

$1 = 9 ( - m ( Y ) >  (A 5 )  

where 6 is defined by (12) and (13), and g(X) is an arbitrary function. 
Next, the terms in e2 derived from (1)  give 

The complementary function for (A 6) satisfying the boundary conditions is 
simply a multiple of g1, and so is not required. If we denote the right-hand side 
of (A 6) by n(X, y), the solution that vanishes a t  y = 0 may be expressed in the 
form 

The other boundary condition requires $2 to vanish at y = a, where 6 = 0 but, 
d$/dy + 0. Hence it is necessary that 

1; W X ,  y)cJ(y)dy = 0. (a 8) 

(Alternatively, this result follows a t  once from (A 6) by the well-known theorem 
used to derive (17 )  from (16).) Equation (A 8) becomes upon rearrangement 

&ss = Fs - W g 2 ,  (A 9) 

where E ,  F and C: are the coefficients defined by (38)-(40). 
Multiplied by 2g,, equation (A 9) is seen to be precisely the first derivative of 

equation ( 3 7 ) .  Thus the previous result is confirmed by the present, quite different 
method of derivation. However, the present approach has the grave disadvantage 
that in the step from (A 9) to (37) the constant of integration is arbitrary, whereas 
the previous method very helpfully identified this constant in terms of the flow- 
force and total-head losses that might occur between the primary and perturbed 
flows. 

Since we could now go on to substitute the expression (A 7 )  into (A 3) and so 
obtain an approximation for @ explicitly to O(c2),  in this respect the present 
method gains over the previous one. But the use already made of the second stage 
of approximation is the more important achievement, since it suffices to fix the 
essential character of the solution for waves of finite amplitude and permanent 

6.2 



84 T. Brooke Benjamin 

form (,e.g. it reveals the dependency of wave properties on the supercritical or 
subcritical condition of the flow, as represented in the coefficient F). Whereas the 
qualitative results thereby obtained are crucial, nothing of further qualitative 
significance is gained by adding the correction E ~ $ ~  to the particularized first- 
order perturbation s $ ~ .  

Inasmuch as a second stage of approximation is needed to determine a func- 
tional form that is seemingly arbitrary at  a first stage, this is essentially the same 
kind of perturbation problem that is presented by classical solitary-wave theory. 
We recall that for the elevation 7 of a travelling wave on water of depth h, the 
linearized shallow-water approximation gives 

7 = ef(z - cot), with co = (gh)4. 

Here f is an arbitrary smooth function. But solitary-wave theory gives 

with 

= csech2[(-) 3E ) z - c 1 t  %h)' 
h l + S  

c: = ( l + E ) C i  (E > 0). 

(Lamb 1932, $253). This should be compared with (65). The excess O(E) of the 
solitary-wave speed c1 above the critical speed co corresponds to the departure 
from critical conditions that is represented in the present problem by E[ = P - P 
and hence by the coefficient P in (A 9) and (37). 
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